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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Computational models are complex scientific constructs that have become essential for us

to better understand the world. Many models are valuable for peers within and beyond disci-

plinary boundaries. However, there are no widely agreed-upon standards for sharing mod-

els. This paper suggests 10 simple rules for you to both (i) ensure you share models in a

way that is at least “good enough,” and (ii) enable others to lead the change towards better

model-sharing practices.

IntroductionAU : Pleasenotethatthereferencecitationsintexthavebeenreorderedtobeinsequentialorder:Pleasecheckandcorrectwherenecessary:
Computational advancements enable scientific communities to better understand and com-

municate complex natural and social phenomena. Scientific practices have also evolved in

light of the need for more dialogue among and between disciplines to study the intricate web

of relationships between diverse objects of scientific inquiry. At the intersection of these tech-

nologies and scientific practices sits the open science movement, making research processes

and outputs available to a wider audience. The present article suggests 10 rules for sharing

computational models according to open science standards.
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Let us begin with a working definition of “computational model,” which we use inter-

changeably with “model”:

Conceptual constructs that are based on scientific theory and/or data, and embedded in a soft-
ware setting to perform manipulations on input data and produce output data for the purpose
of scientific advancement or policy development.

The above definition of “model” is by no means perfect, but it begins to elicit some of the

benefits of good model-sharing practices. From a scientific perspective, providing information

about a model and its assumptions enables its reuse and scrutiny. Where a researcher discovers

a model that is relevant to their work, the model’s openness allows for it to be adapted to the

researcher’s work without needing to reverse-engineer the model, nor guess at its underlying

assumptions. Sharing models also gives researchers the chance to promote their work accord-

ing to common publication practices. Models that are shared following good practices can be

understood by more academic audiences and cited in academic publications, allowing their

creators and contributors to garner credibility among their peers. As well as peers, policy-mak-

ers and broader communities also tend to place greater trust in the outputs of models that are

publicly accessible [1]. Indeed, evidence shows that open science practices increase the impact

of data-driven research [2].

Sharing computational models does come with its own set of challenges. Firstly, there is a

tension between more frequent requirements for model-sharing by funding agencies, and the

minimal instructions on how to do so [3]. Secondly, the relevant cyberinfrastructure and stan-

dards for sharing models may be lacking, difficult to discover, or fragmented and hard to navi-

gate. Thirdly, modeling often is an inherently multidisciplinary endeavor. This may

complicate model-sharing because diverse disciplinary experts may need to come together to

agree on a shared worldview for the project’s purpose [4]. What’s more, models often act as

boundary objects between different scientific domains and diverse stakeholder groups. This

creates several audiences with whom to share models, and each will have different interests.

With this, we will use the following working definitions for 4 stakeholders of computational

models:

• Domain experts are those with training in specific disciplines that use modeling to advance

scientific understanding within their domains (e.g., biologists, economists, physicists, and

anthropologists);

• Model developers are those with training in computer science, software engineering, and

related fields that grant them the skills to develop the computational models that benefit

diverse research domains;

• Policy-makers are those who develop and sometimes implement rules, regulations and plans

from a governmental body; and

• Archivists are those dedicated to archiving research artifacts for a community and supporting

model developers.

Other stakeholders will be introduced later on, including research software engineers

(RSEs) and publishers. For now, it is worth noting that people with both domain expertise and

model development skills are becoming increasingly common, such as in bioinformatics,

oceanography, and heliophysics.

A fourth challenge to model-sharing relates with the need for careful planning, time, and

effort. For example, the task of creating documentation that addresses the needs of all relevant
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stakeholders without a well-formulated standard can impose a large additional burden on

researchers, especially for those on precarious contracts.

Finally, our definition of computational models incorporates various elements: conceptual

constructs, data, metadata, and software. Meanwhile, the widely adopted open science princi-

ples of findability, accessibility, interoperability and reusability (FAIR) tend to focus on one or

some of those elements. Indeed, the FAIR principles were originally applied to data [5] and

have since been adapted for research software (FAIR4RS) [6] and machine learning

(FAIR4ML) [7]. With this, the FAIR principles and their adaptations are applicable to some

extent yet insufficient for models. Although we do not need to reinvent the wheel when devel-

oping or enacting good model-sharing practices thanks to the open science movement, work

remains to be done.

This is the backdrop of our 10 simple rules for good model-sharing practices. These recom-

mendations result from a series of online workshops that took place between February and

May 2024 [8]. The workshops were advertised to all members of the Open Modeling Founda-

tion (OMF) and several networks that OMF executive committee members are a part of,

including GO FAIR, US RSE, Open Life Science (OLS), All Tech Is Human, OpenSciency, and

NASA. The workshops were agnostic to domains and modeling methods, touching on every-

thing from physical, biological, and social systems, to equation-, agent-, and ML-based models.

Each workshop focused on a topic that was brought to life by one or several experts, who then

engaged in lively discussion with audience members (Fig 1).

The following 10 simple rules are designed to enable and promote good model-sharing

practices that are tenable and flexible—this is why they are “good” and not “best” practices.

Fig 1. Ten simple rules for good model-sharing practices. The recommendations should be useful for widely

different model developers and model stakeholders, and across public and private organizations. Three axes are worth

keeping in mind when reading the recommendations. Firstly, both model developers in the ML space and those who

do not work in ML should find value in the recommendations. Secondly, models developed for long-term impact and

maintenance may gain from all the rules, while single-use models—models solely developed for analysis in one specific

project—may only benefit from rules on contributor acknowledgement, metadata, and publication. Thirdly, the rules

are split according to whether they describe changes you can work towards as an individual modeler (rules 1–6 and

10), or structural changes we believe you can play a part in (rules 7–9).

https://doi.org/10.1371/journal.pcbi.1012702.g001
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We also note that we do not use “good” in its moral sense and that ethical considerations

involved when sharing models and their diverse elements are beyond this paper’s scope. Incor-

porating some or all of the below practices into your model-sharing can significantly increase

your work’s impact on the community, often resulting in increased citations, collaborations,

opportunities, and funding.

Rule 1: Define what you mean by “model”

Scientists and organizations can only understand one another and collaborate effectively when

they use terms in similar ways [9–11]. A collision of terminology is highly likely, since models

can be very diverse in nature. Therefore, when sharing your models—or even just speaking

about models—clearly articulate what “model” means to yourself, your team, and your

community.

Let’s take a moment to unpack this paper’s working definition of computational models:

Conceptual constructs that are based on scientific theory and/or data, and embedded in a soft-
ware setting to perform manipulations on input data and produce output data for the purpose
of scientific advancement or policy development.

The definition is discipline-agnostic to be inclusive of a great deal of modeling work that

takes place in scientific research. The definition is also vague regarding models’ “software set-

ting,” which could be for representing systems and their processes throughout time, eliciting

correlations among large data sets, or something else. Finally, “scientific advancement or pol-

icy development” is what happens once there is a clear relationship between a model’s inputs

and outputs, and insights can be gained and acted on. A model enables this, but its purpose

must be more specific.

To have more productive discussions about the models we share, it is helpful to clarify their

domain, type, and purpose.

• Domain: For which discipline was the model created? (E.g.: genomics, economics, or phys-

ics). Are there domain concepts used by the model that should be clarified or otherwise doc-

umented or domain-specific standards [12] being followed?

• Type: Describing a model’s type may elicit important features, such as the treatment of time

and explainability of the outputs. One taxonomy of models defines 13 types of models: non-

deterministic, deterministic, static, dynamic, discrete, continuous, stochastic, individual-

based, population-based, logic, automata, black-box, and hybrid [13].

• Purpose: What is the purpose of the model being shared? Being explicit about this improves

a model’s adoption and reuse statistics. Edmonds and colleagues suggest the 7 purposes: to

anticipate, establish cause-effect chains, represent what is important, test hypotheses, com-

municate ideas, simulated processes, and further shared understanding [14].

The above lists of types and purposes are not exhaustive nor set in stone, and you may even

feel your models fall into more than one of these domains, types, or purposes. It is worthwhile

to carefully choose the best 1 or 2 items in each category that best align with your model.

Clearly defining what you mean by “model” helps with understanding what essential compo-

nents of the research are needed to describe, preserve, and cite your work. A clear definition

supports transparency and replication of experiments, fostering a more collaborative and

effective scientific environment.
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Rule 2: Involve the community in informing and promoting model-sharing

practices

Community building is a key element to promoting good model-sharing practices. Indi-

vidual model developers are embedded in larger communities and their behaviors are

guided by community norms. You may shape those norms by involving your communities

when sharing models. Establishing community engagement and buy-in is crucial for the

open modeling efforts of any domain, especially early in the process. Where no defacto com-

munity modeling standards exist, we recommend:

1. Surveying your community for requirements, establishing the community’s needs and their

unique challenges, as well as current good practices to avoid “reinventing the wheel”;

2. Engaging with the community to brainstorm potential or “strawman” solutions to those

open modeling challenges;

3. Selecting a subset of community members who represent both respected experts in the field

and those most willing and available to lead modeling standards efforts;

4. Being prepared to prioritize, as complete agreement is rarely attainable, and available

resources are often insufficient to fund everyone’s efforts; and

5. Allowing emerging standards to be adopted by different communities and adapted to their

contexts.

We find some of these elements present in the history of the Overview, Design concepts

and Details (ODD) protocol. The protocol originally suggested a standardized format for

describing agent-based models (ABMs) in ecology [15]. The protocol resulted from a work-

shop conducted in 2004 [16] and the contributions from 28 co-authors—this roughly covers

recommendations 1-to-3 above. What’s more, as the protocol was more widely adopted, it was

adapted to new applications, including more complex models [17] and other disciplines [18]—

this is recommendation number 5.

Community involvement strategies don’t all look the same, but we can draw inspiration

from relevant guidelines, established open science communities, and the role of early career

researchers (ECRs). Regarding guidelines, consider the CARE Principles for Indigenous Data

Governance [19]. For models, CARE means allowing for the community to benefit from their

own and others’ contributions, giving the community a voice in controlling use and distribu-

tion of relevant models, and considering the ethics that relate to the use of the models (e.g., by

documenting assumptions, known biases, and guidance for mitigating against identified

risks).

Regarding open science communities, we may learn from the likes of FORRT, a community

of over 600 people “raising awareness of the pedagogical implications of open and reproduc-

ible science in higher education” [20]. Other example organizations foster inclusive communi-

ties that value collaboration are 2i2c, The Carpentries, the Center for Scientific Collaboration

and Community Engagement, Invest in Open Infrastructure, MetaDocencia, and OLS [21].

These initiatives demonstrate the effectiveness of community-focused strategies in promoting

openness and reproducibility in research, offering valuable frameworks that can be adapted

and implemented across various scientific disciplines.

For the long-term promotion of model-sharing practices, special attention should be given

to ECRs. ECRs constitute the largest researcher community in most countries [22] and repre-

sent a new generation of researchers who have been trained during the software technology

boom. This boom has laid the groundwork for open science FAIR model-sharing practices.
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However, there is increasing evidence that suggests the ECR community is not embracing

open science nor sharing scientific artifacts enough [23,24]. This reluctance is understandable

considering the “publish or perish” culture of academia. In addition to publishing in journals,

sharing models according to good practices requires additional resources, which ECRs often

lack.

Despite the challenges, many young researchers are commiting to open science through

their own communities—such as DSOS (Data Science and Open Science) and AEMON-J

(Aquatic Ecosystem MOdeling Network—Juniour) in the aquatic sciences—or spaces created

by institutions—such as the Open Modeling Foundation’s Early Career Scholars Working

Group [25,26]. Ultimately, ECRs are the torchbearers of transformative change, setting the

norms of science in the near future. Therefore, it is crucial to provide sufficient support and

guidance to this key community.

Rule 3: Acknowledge diverse contributions

Computational modeling is usually a multidisciplinary endeavor. Contributions may be

of very different types, involving model developers, domain experts, archivists, and policy-

makers. With this, you must be ready to acknowledge such a great variety of contributors,

and the Contributor Roles Taxonomy (CRediT) is one approach towards this goal. Often,

modeling involves inputs from 2 types of parties: domain experts and model developers. While

domain experts may provide the theory and data underpinning a model’s assumptions and an

initial approach to formalizing a conceptual model, model developers would embed that

domain expertise into software according to good practices. It would be unfair to publish a

model in a way that did not attribute authorship to all those involved. However, generally,

only those who write papers that are published in academic journals gain recognition through

authorship. This matters because authorship is often the currency of the credit economy of sci-

ence [27], and there are few journals that publish models [28].

One movement that has successfully challenged the status quo of academic publishing is

the “Hidden REF” in the UK, which celebrates all research outputs, not disproportionately

rewarding publications like the “research excellence framework” does [29]. This is a step in the

right direction for model-sharing, as models are not generally peer-reviewed through aca-

demic publications. So, when sharing models, it is important to think carefully about whom to

acknowledge and how.

Commonly, scientific contributions are recognized through authorship. Despite making

scientific contributions, authorship is not typically given to RSEs or other people not contrib-

uting to publication texts. To resolve this issue and acknowledge such diverse contributions,

publishers are progressively integrating the CRediT into their workflows and metadata systems

[30]. Below, we outline 3 contributor roles that are particularly pertinent to the context of

modeling:

• Data curation—which CRediT defines as activities related to training data annotation, clean-

ing, and maintenance—extremely time-consuming yet fundamental to model-production.

Publicly available data sets for certain types of modeling (e.g., healthcare) are notably scarce.

Furthermore, issues of missing or noisy data require preprocessing techniques that require

special considerations for categorizing data (e.g., blood pressure data being “high,”

“medium,” or “low” according to different clinical guidelines).

• Formal analysis necessitates computational or mathematical techniques for data analysis or

synthesis. After data cleaning, analysis may include imputation (e.g., mean, median, or k-

Nearest Neighbors) to fill in missing values based on extant data, data partitioning for
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training and testing, feature extraction and selection, hyperparameter optimization,

dimensionality reduction, and performance metrics.

• Software development and related tasks are well covered by the “All Contributors” effort,

which enables semi-automated contribution roles to be added for a person contributing to a

GitHub repository [31]. However, modeling may require an additional contributor role for

hardware, which can often be quite specific for the given model. Indeed, certain models can

only run with sufficient computational power (e.g., a GPU as opposed to a CPU).

The structure required to recognize nontraditional contributions is growing. Initiatives such as

CHAOSS are investigating methods to represent these contributions effectively for the benefit of

research project health and individual recognition [32]. Repositories like Zenodo are incorporat-

ing contributor roles and increasingly adopting the CRediT taxonomy. It is now possible to easily

add recognition for a person’s contribution to a GitHub repository using “All Contributors.”

Additionally, specific communities are working to make such taxonomies more comprehensive,

ensuring that all contributions receive appropriate credit (e.g., those in the geosciences) [33]. Even

indicators of scientific credit are evolving. Consider DORA, a global initiative that aims to

improve the ways in which scholar outputs are evaluated. DORA adopts a broad definition of sci-
entific output that includes not only scholarly articles but also data sets, patents, and software [34].

Rule 4: Provide accessible documentation for the appropriate audience

Make your model reusable and more impactful by providing documentation alongside

it. By “documentation,” we mean a collection of documents and additional written mate-

rial that describe a computational model across its entire life cycle and along with its

underlying assumptions and scientific bases [35]. This helps communicate to diverse

stakeholders why a model is worth using. Generally, models are more impactful where their

users deem them to be (i) scientifically sound; (ii) relevant to the policy issue at hand; and (iii)

the result of stakeholder engagement [36]. Accessible and thorough documentation is critical

to model-sharing. In some cases, additional comments in documentation are needed to aid in

understanding. Depending on the nature of the comments, they might be included in the

code, in a public notes document where notes on the history of the model usage and stability

are contributed, as structured metadata linked to the model’s metadata record, or as a combi-

nation of these. As a general rule, the more complex a model is, the more effort should be

spent on creating its documentation, although metadata management technologies are becom-

ing increasingly capable at streamlining such processes.

Documentation should contain valuable information for various audiences and be clearly

organized. Efforts have already been made for making models more interpretable to different

audiences. For example, “model cards” summarize, among other things, a model’s perfor-

mance in different contexts and its intended scope [37]. They provide a helpful template for

reaching audiences of different technical abilities. Meanwhile, the Model Openness Frame-

work articulates the different components and their respective open licenses that are required

for sharing deep learning models, how those objects interconnect, and the stakeholders that

would be needed to support more robust model-sharing [38]. While such frameworks are

comprehensive and require technical expertise to implement, they improve the model’s impact

on downstream users.

At least 4 audiences benefit from tailored documentation: policy-makers, domain experts,

archivists, and fellow model developers.

• Policy-makers gain from detailed documentation relating to potential policy impacts. Pol-

icy-informing models should be presented as such and accompanied by documentation that
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allow policy-makers to understand the science and articulate policy decisions based on the

model [39]. Relevant documentation elicits assumptions, explains the contextual conditions

and input parameters under which the model’s result should be considered valid, depicts the

maturity of the model, and summarizes the underpinning science without using jargon.

• Domain experts benefit from documentation with more thorough explanations of the science

underpinning a model, why it is a valid representation of its target, and why it is fit for purpose.

Those explanations should include the jargon expected by experts in the science field but without

any expectation of past modeling experience [40]. Indeed, research has shown that documentation

targeted at domain experts may increase the trust they deposit in a model’s output [41].

• Archivists use model documentation and model metadata to determine the maturity of the

model and, thus, what level of supporting resources to assign to the model. For example, a

mature model’s documentation would include the high-level content described elsewhere in

this section, detailed installation and execution notes, and recommendations on input data-

sets or settings for several example scenarios of importance. Assuming sufficiently rich

model metadata—archivists might also provide support with intensive curation, user inter-

face design, and dedicated funding for model executions at the model developer’s institution

as requested by the community. Conversely, a less mature model may only be preserved for

community reference (e.g., a Zenodo deposit).

• Other model developers benefit from documentation. For example, justifications of deci-

sions that cannot be captured in metadata often help with a model’s replicability. Model

developers may also find themselves working across different domains throughout their

careers. For this purpose, more accessible documentation may help those who are new to a

model’s domain to better understand the model’s nuances. An example is Earth System Doc-

umentation, which provides comprehensive documentation about the complex earth system

models developed by more than 40 modeling groups worldwide, thereby allowing model

developers to better understand the internationally coordinated effort. Additionally, inte-

grating narrative and code through computational notebooks—such as Jupyter—can aid

readers and users understand and reuse models. These notebooks interweave explanatory

text with executable code, clarifying the model’s functionality and application.

Sharing models with accessible documentation is consistent with, and enabling of, common

publication practices. Indeed, accessible documentation helps with a model’s assessment at the

peer review stage before publication. Consider that there may be very few peer reviewers for

any given submission who have both the relevant domain knowledge and the necessary model

development expertise to evaluate a model. Therefore, it is helpful to additionally provide

accessible documentation on a model’s parameters and dependencies—perhaps in a README

file—that allows for its replicability [42].

Rule 5: Embrace FAIR principles for sharing models

The FAIR principles have gained significant traction throughout open science initia-

tives. It is important that you don’t try to reinvent the wheel when it comes to good model-

sharing practices. With this, you can draw on the FAIR principles when sharing informa-

tion about your model in its metadata. The principles for creating FAIR metadata for data

and software generally apply to how we share computational models. However, models present

unique challenges due to their integration of conceptual constructs, metadata and software:

models are distinct from the usual target of the FAIR principles. For example, a data set’s meta-

data does not provide insights about its individual components (i.e., data points), while a
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model’s metadata may provide insights about some components (e.g., an ML model’s metadata

describing distinctions between its training and testing data). Furthermore, when sharing a

model’s metadata, we are not necessarily sharing the data on which they were built, calibrated

or validated. Rather, we are sharing information about the model.

These unique features render the FAIR principles a substantively complex topic for their

implementation in the context of models. In what follows, we provide only simple consider-

ations to improve a model’s findability, accessibility, interoperability and reusability, as well as

its provenance.

• Findability: Models and their related artifacts (e.g., data sets and software) can be found and

identified through relevant indexes and repositories if each are assigned persistent identifiers

(PIDs) such as digital object identifiers (DOIs) for each version. This also helps situate mod-

els within complex knowledge graphs, supporting to findability from a variety of access

points (e.g., publication and data set landing pages, internet browsers, and community-spe-

cific search interfaces). In many cases, the complex landscape of artifacts relevant to a given

model is more properly addressed with a metadata container identifier. For this, we may use

a Research Activity Identifier (RAiD) or a Research Object Crate (RO-Crate) [43], which

effectively interlink a model’s heterogeneous research elements. Metadata underpinning the

chosen PID may also make the model citable in publications or on websites, providing

another important component of findability.

• Accessibility: When sharing models, a working link to access the complete model should be

made available to the public, including code, executable files, and other items needed to use

the model. However, items that are restricted by national or institutional policies or con-

tracts should remain restricted until those conditions can be changed. Given the commonal-

ity of such situations, model accessibility should be planned ahead of time.

• Interoperability: Metadata produced in standard formats can be used to locate models within

their broader research contexts, thereby allowing the model’s metadata to be interoperable

with other domain-specific research projects. An example of this is at BioModels,

EMBL-EBI, where the team of model curators enrich metadata and convert code into stan-

dard formats for their respective domains (e.g., systems biology markup language “SMBL”

for systems biology, and Open Neural Network Exchange “ONNX” for ML-trained models)

[44]. Ultimately, the curators ensure that models made available on the BioModels platform

are interoperable with relevant systems and can be adequately indexed by other databases.

• Reusability: Model reusability can be enabled through 3 lines of action. Firstly, the usage

license for the model must be included in the model’s metadata for the user to understand

their legal rights to reuse the model, ideally indicated with a machine-actionable identifier

(e.g., from spdx.org). Secondly, metadata can capture information needed to run the model.

For example, in some domains, models may only be usable by interacting with code or tools

that require complex workflows, such as specialized hardware, programming languages, and

other specific dependencies. Consider a model trained to run on a GPU and that requires

using the c++/CUDA programming language. In turn, this programming language’s func-

tionality may depend on a certain programming package, such as cuda-toolkits [45]. Finally,

models may contain sensitive items that are not publicly available. Such cases emphasize the

importance of providing relevant model metadata for their potential reuse when said items

become available.

• Provenance: Although provenance is a component of reusability (R1.3. [5]), we separate this

concept out due to its complexity for models. Provenance refers to the need to (i) explain the
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history of components for the credibility of a model [46]; (ii) understand the process by

which a model produces results in general and for a specific run; and (iii) link all relevant

data sets, publications, and other software to the model, such as input and output data or

training data [47]. Attribution metadata is useful to understand from where training data

was derived (and, if relevant, where they were stored) and/or what base models may also be

relevant. For example, image classification models may need to address questions of attribu-

tion, licensing (for images), and other provenance-related concerns. Documenting prove-

nance is also a critical component of model validation studies where different versions or

frameworks of the model may be used to predict various events with widely varying

accuracies.

In models that produce research artifacts such as data, the practices described above must

also be included in—or linked from—those artifacts. Although we have focused on making

models FAIR, we should also seek the appropriate mechanisms to make model outputs just as

FAIR.

Readability and actionability are enabled by the FAIR principles. Model metadata becomes

machine readable and actionable when it is aligned with international and community-specific

metadata structures. Said alignment enables a wider application of search tools to improve

findability, and can improve the richness of the metadata, benefiting all interested stakehold-

ers. The main international metadata structures are DataCite, Schema.org, and CITATION.

cff, and should be used to structure the minimal metadata for models. Additional metadata

beyond the minimum requirement for PID creation—such as those recommended by Code-

Meta—are useful to support discoverability. We should also incorporate community-specific

recommendations for FAIR implementation, which often relate to unique disciplines (e.g., the

“Data, Optimization, Model and Evaluation” (DOME) [48] recommendations in the bioinfor-

matics community).

Rule 6: Publicly recognize and reward research software engineers

RSEs can play important roles in modeling projects but have only garnered attention in

recent years. With RSEs’ varied contributions to modeling, it is important to specifically

recognize and reward their work. Acknowledging diverse contributions is key to good

model-sharing practices. However, there is one key role that is particularly crucial to the

modeling process: the RSE. Computational models have always required software of some

sort, but the term “RSE” was only coined in 2012, when a group of scholars met in Oxford, to

ask: why is there no career for software developers in academia? [49]. Through campaigning

and public outreach, the recognition of RSEs gained overwhelming support, and now encom-

passes about 10,000 professionals worldwide, and 9 region-specific communities [50]. But we

must continue to celebrate the work of RSEs, and the value they bring to modeling is varied

indeed.

In modeling, RSEs help domain experts work with the complex software they develop. They

play a translational role between domain-specific expertise and software-specific tasks, such as

data processing, model simulation, and software testing [51]. Thus, the RSE both applies their

skills in software engineering, and comes to learn some of the intricacies of the domains with

which they engage.

What’s more, RSEs provide a service to domain experts, who often have widely varying

degrees of coding, software, and modeling skills. For RSEs, this means having to meet their dif-

ferent users’ specific needs. Some users may need complex cyberinfrastructure solutions to

lead projects carried out by entire teams. These users will likely be more tech savvy. At the
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other end of the spectrum, we may have early career researchers with little technical expertise

who require support with simpler tasks.

One approach that has been found to help RSEs tailor solutions to specific user needs is

“design thinking,” which is user-centric and solution-based [52]. Software engineers in busi-

ness settings have applied design thinking for over a decade [53], and it has already been found

to relieve tensions in consortia involving both private companies and research institutions

[54]. One specific instantiation of design thinking applied by RSEs is at the University of Notre

Dame’s Center for Research Computing, where they specifically use this approach to deliver

solutions that meet the needs of their users [55].

RSEs also help other stakeholders engage with model outputs in an accessible way. In clini-

cal settings, it has been observed that RSEs remove technical barriers for clinicians and indus-

try partners [56]. The different metadata and documentation resulting from good model-

sharing practices also require RSEs’ input, and we have already seen the varied audiences sup-

ported by such practices.

With all this, RSEs play a critical role in modeling, and must be given the credit they deserve

to attract and retain their talent for modeling purposes. Beyond giving RSEs credit, a good

model-sharing practice is to standardize their roles and enable their career development [57].

This requires a more fundamental shift in how RSEs are evaluated in the workplace, as applying

traditional academic norms to this emerging role is driving them away from research contexts

and depleting the sciences of the skills and experience needed to tackle complex problems [58].

Rule 7: Deploy user-friendly tools for collaborative modeling practices

User-friendly tools, such as interfaces where users can request a model execution, are

essential for models to be more seamlessly adopted by domain experts, including those

who may lack the specialized computer science training [59]. Models often rely on complex

cyberinfrastructure, and science gateways offer a solution for making modeling more

accessible and straightforward. In the early 2000s, several initiatives aimed to democratize

cyberinfrastructure, making it available to researchers regardless of their geographical location.

Through online portals, these initiatives enabled researchers to access various software applica-

tions, store and share large data sets, and even obtain training materials. This era marked the

beginning of widespread accessibility to computational resources, laying the groundwork for

the development of modern science gateways [60].

Today, science gateways provide intuitive interfaces that abstract the underlying technical

complexities, enabling researchers to focus on their scientific problems rather than on the

intricacies of the software. By offering integrated environments that support various work-

flows—from data analysis to simulation and visualization—science gateways streamline

research processes, foster collaboration, and accelerate discovery. They also facilitate reproduc-

ibility and transparency in research by providing standardized tools and methodologies, mak-

ing it easier for experts to validate and build upon each other’s work. Ultimately, user-friendly

science gateways democratize access to advanced computational resources, empowering

domain experts to leverage cutting-edge technologies to advance their fields. However, limita-

tions still exist for science gateways to incorporate computationally complex models—such as

earth system or forecasting models—requiring the participation of model developers to per-

form the set-up and execution of the model to create the desired output. Additionally, model

coupling requires a human-in-the-loop interaction that needs RSEs to prepare the science

gateway for such steps.

One example of a widely used science gateway is MyGeoHub [61]. MyGeoHub allows

access to several science gateways for geospatial research and models. One of the platforms
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that are accessible via MyGeoHub is the WaterHub [62], which provides substantial benefits

for Soil and Water Assessment Tool (SWAT) [63] modeling by enhancing open data access

and reproducible workflows.

As a centralized repository for SWAT models, MyGeoHub simplifies the process by elimi-

nating the need for complex local setups on a user’s computer for running the models. Fur-

thermore, the science gateway fosters a collaborative environment by allowing users to share

data either publicly or within projects they can configure and add members to. MyGeoHub

allows for fine-grained security in the different science gateways that people can decide to keep

data first private or to share data within a project or fully publicly.

MyGeoHub’s cloud-based scalability and high-performance capability allow users to run

complex simulations on powerful resources, thus overcoming hardware limitations. Moreover,

the potential integration with visualization tools within MyGeoHub enhances the clarity and

communication of research findings. Additionally, MyGeoHub’s compatibility with SWAT-

Share streamlines simulation processes and facilitates easy access to results.

SWATShare [64] is a web platform of the widely used, public domain hydrologic model

SWAT. This semi-distributed, conceptual model simulates various processes, including rain-

fall-runoff, non-point source pollution, and the impacts of agricultural management practices

on watersheds. Developed and maintained by the USDA Agricultural Research Service [65],

SWAT is a valuable tool for researchers worldwide. The widespread adoption of SWAT is

well-aligned with MyGeoHub’s collaborative framework, as SWAT’s open-source nature com-

plements MyGeoHub’s mission to promote open science practices in hydrology. Fig 2 shows

an example of a model created for hydrology research on the Tokwe Watershed by Enos Bahati

and shared via SWATShare. This visualization is accessible via the WaterHub in MyGeoHub.

In addition to the visualization, users have access to the metadata for this model including

important research measures such as simulation time steps and simulation periods—this case,

30 years (Fig 2).

Fig 2. Screenshots from SWATShare. The left panel shows available research projects in blue across most of Africa. The dot in red in Uganda has been

selected, and relates with 2 models by Enos Bahati. The right panel shows metadata from the “New_tokwe” model. The figure is available under CC-BY 4.0 and

can be replicated at https://mygeohub.org/groups/water-hub/swatshare?model_id=dc58f0b2b76ab9f799e35d47b400d4e.

https://doi.org/10.1371/journal.pcbi.1012702.g002
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Supporting and training staff, including RSEs, and implementing practices like hallway test-

ing (asking others to use your code to understand any usability issues) [66] are critical prac-

tices for ensuring the user-friendliness of services and tools. They help fill information gaps,

connect users with complementary tools and services, and facilitate the enhancement and iter-

ative improvement of model interfaces. User-friendly services encompass a range of elements,

including effective documentation, comprehensive usage instructions, and demonstration

resources. These components collectively enable users to understand and effectively integrate

models into their own work, thereby enhancing overall usability and accessibility.

The development of user-friendly tools and the support structures surrounding them are

pivotal in making advanced modeling and computational resources accessible to a broader

range of researchers. By lowering the barriers to entry, science gateways not only democratize

technology but also pave the way for significant scientific advancements, driving innovation

and progress across various domains.

Of course, not all research domains have science gateways in place. In such cases, it is worth

going back to basics by learning from the earlier initiatives; for example, by pursuing a distrib-

uted modeling network approach where modeling capabilities are hosted at different institu-

tions but accessible through a single interface. You can also advocate for science gateways as a

possible solution to your community’s needs.

Rule 8: Influence publishers to promote good model-sharing practices

As part of the research community, you have the power to influence what model-shar-

ing practices are valued and adopted. Whichever your role in modeling, you should guide

your peers and future scholars towards good model-sharing practices, and seek opportuni-

ties to inform the policies that publishers implement. When publishing computational

models, it is crucial to adhere to high standards for data- and model-linking by using appropri-

ate PIDs. Detailed metadata, precise version control, and comprehensive documentation of

data sources and model parameters are also essential components. These measures enable

other scientists to understand and replicate models.

Furthermore, high standards in data- and model-linking facilitate meaningful comparisons

across studies and foster collaborative advancements in the field. By maintaining robust links

between data and models, researchers can more easily integrate their work with existing studies,

leading to new insights and innovations. This approach enhances the credibility and impact of indi-

vidual research projects, and contributes to the broader scientific community’s collective knowledge.

But who creates standards for model-linking? Generally, there are 2 approaches to develop-

ing standards: top-down and bottom-up. Top-down standards may come in the form of gov-

ernmental or organizational policies. Policy-based approaches have been shown to be the most

effective at increasing data-sharing [67], but the degree to which publishers require models to

be shared is variable. For example, in a study of 7,500 articles on individual- and agent-based

models that were published across 1,500 different journals, only 11% were found to share code

[68]. Furthermore, data from DataCite shows that, out of over 17,000 models accessible

through their platform, there are less than 1,000 citations in the literature to the models

because they are not cited in their related metadata or publications [69].

One instance of a top-down policy can be found at the journal Springer Nature, which now

has a policy that encourages code-sharing [70]. The policy’s implementation has relied on the

human support and technological infrastructure made available to authors. Indeed, the policy

requires journal staff to assist authors in making their code executable on CodeOcean. The

policy also results from a pilot, where authors responded with little resistance [71]. This points

to the second approach to developing standards.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012702 January 10, 2025 13 / 21

https://doi.org/10.1371/journal.pcbi.1012702


A bottom-up approach to developing standards for model-linking relies on communities

reaching a sort of “tipping point” [72]. At this tipping point, model developers and stakehold-

ers cohesively adopt and disseminate some practice to such a degree that it becomes a stan-

dard. We already saw how this might be achieved with the case of the ODD protocol. In the

case of Springer Nature’s policy, the research community’s readiness to follow open science

practices was instrumental for its viability. With this, there is potential for model developers to

promote model-sharing by influencing publication policies [73].

Researchers can shape model-sharing practices in various ways. Those who serve on journal

boards can use their positions to influence journal policies. Where this isn’t possible, research-

ers in their role of peer reviewers can hold others to account and use their position to normal-

ize model-sharing. In addition, community members in educational settings can train

budding scientists to share models. The goal is for the next generation of scientists—who will

go on to become future editors, reviewers, principal investigators, and teachers—to carry the

torch of model-sharing [74].

With this, model-sharing isn’t just about enacting good practices, it’s also about promoting

them. Whether you’re a mentor, professor, librarian, PhD candidate, or somebody else in the

modeling world, you can inform how your networks approach model-sharing. Being part of

academic publication processes is just one way to do this.

Rule 9: Break down silos

Working within silos is detrimental to scientific progress. With modeling being inher-

ently multidisciplinary, you should value the role of collaborating across disciplines and

organizations as central to all good model-sharing practices. After all, computational

models are shared by people, for scientific and policy advancement, via platforms. The

concept of multidisciplinary collaboration in modeling is not new. For example, geoscience

requires a diverse collection of expertise including physics, biology, chemistry, and social sci-

ences to model the entire Earth system. This has led to a community-driven approach to

model development and sharing called Community Earth System Model, which originated

from the United States and the EC-Earth consortium in Europe. This approach is now co-

developed by the international community and shared across the globe. Recent technological

developments such as cloud computing also make sharing and international collaboration

more streamlined.

We have already seen the various stakeholders who benefit from model-sharing practices—

from policy makers to publishers and scientists (rule 4). The rule on accessible documentation

proffered one approach to break down silos: it is a good model-sharing practice to enable

diverse audiences to engage with your models by anticipating their needs through documenta-

tion. Indeed, when it comes to modeling for public policy purposes, research has found that

involving different stakeholders from the outset increases the likelihood of a model being used

and effective [75].

The rule on community-driven insights (rule 2) is also relevant: model developers should

establish or be part of communities that encompass diverse disciplines and perspectives. Such

communities may even bring together different modeling stakeholders. A key learning rule 2

is that breaking down silos does not happen automatically. Building communities takes effort

and must be intentional. Having clear codes of conduct and welcoming different types of con-

tributions are some ways to bring seemingly distinct communities closer together.

The rule on acknowledging diverse contributions (rule 3) further supports the community

rule: we are not only engaging with diverse communities but also rewarding them. The

CRediT taxonomy we saw there is predicated on the need for different staff—not only
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academics—to be acknowledged. In this regard, breaking down silos different departments

across organizations working cohesively and being recognized in modeling efforts.

We already saw the role RSEs have to play (rule 6), and we can imagine how IT may provide

support by making certain hardware and software available; how project managers, events coor-

dinators and communications teams may help a project run smoothly and be effectively dissem-

inated; and how cybersecurity experts may help teams establish policies on what excluded from

model-sharing, from passkey values to dependencies on vulnerable packages [76].

Finally, we saw how science gateways are one approach to making cyberinfrastructure

accessible to domain experts (rule 7). Increasing the accessibility of models using science gate-

ways further breaks down silos, connecting a greater portion of a given community to

advanced modeling capabilities without needing to know the right people.

Collaboration is essential for breaking down silos and fostering innovation in model devel-

opment. Platforms such as GitHub and Hugging Face are widely used in facilitating the neces-

sary interactions for advancing model-sharing practices [77,78]. The now-forming capability

to execute complex models using a mix of cloud and on-premise resources also advances col-

laboration capabilities, further linking model developer communities together without having

to rely on third party platforms to produce a model run [79]. These platforms and capabilities

enable dynamic collaboration, allowing for continuous improvement, shared contributions,

greater accessibility to both the models and their developers, and new ways to run models.

Rule 10: Don’t wait for perfection when sharing models

As the adage goes: perfection is the enemy of progress. We cannot be paralyzed by the

desire to enact every good model-sharing practice each and every time. Rather, we must do

the best we can, given the resources we have access to and the policies our institutions

implement. Making information about computational models publicly available is typically

advantageous. However, there are many elements involved in the process; from clear licensing

and different types of documentation to community-building and acknowledging contribu-

tions. Although there are challenges that inhibit model-sharing (e.g., a lack of technical skills

to create user-friendly interfaces, or time constraints that do not allow for extensive documen-

tation), it is important to realize that the act of sharing a model—in any format—holds more

value than withholding it entirely [80–82].

Model-sharing takes place along a spectrum, from minimally making DOIs available to

referencing some of a model’s components, to producing comprehensive documentation for

diverse stakeholders to learn from a model. With this, it may be difficult to share comprehen-

sive information about models, but we can always consider implementing those simpler, good

practices that we can achieve.

Actively sharing models can help us be better prepared for the future of modeling. There is,

after all, an increasing institutionalization of model-sharing. This is occurring at governmental

and organizational levels. The European Union’s AI Act is an example at the government level

of increased expectations to share models, whereby models that are components of artificial

intelligence (AI) systems may trigger certain exemptions for the model developers if shared for

free and open-source [83]. In the US, we find other efforts along these lines, with the White

House seeking input on the risks and benefits of making AI models’ weights widely available

[84].

At an organizational level, we find various examples of developing and implementing

model-sharing policies:

• Wageningen University & Research (WUR) in the Netherlands has a team of model audi-

tors. Their job is to assess the quality of models produced within WUR’s research
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departments [85,86]. WUR’s Research Modeling Group has also established clear standards

for model developers to follow [87,88]. Through their published standards and auditors,

model developers at WUR have access to support to ensure their models meet the institu-

tionalized criteria for model-sharing. Moreover, WUR staff have access to their “good

modeling practices Wiki,” where they can both learn about standards shared in academic lit-

erature and make their own contributions [89].

• The Channing Division of Network Medicine (CDNM) has institutionalized an approach to

running code in clinical research settings. In this case, CDNM has developed “Data ID

forms” for documenting the location and run date for the code that produces all figures,

tables, parameters, and numbers reported in a paper [90]. It is worth noting that this form

fits within a wider set of governance structures that promote research integrity.

• NASA, meanwhile, updated their policy regarding the models they fund in 2022. The policy

requires models to be shared at the time of publication of the first related article, or at the

end of the research award, as long as the software is not restricted. The policy additionally

instructs such software to be developed openly on a version-controlled platform. This signals

a long-awaited shift towards open science practices for models [91].

As with these 10 simple rules, we cannot expect perfection when sharing models. A vari-

able’s provenance, a discipline’s perspective, or an assumption’s justification may always be

missing. We continue to operate in a world where the establishment of standards and availabil-

ity of peer reviewers for models are far from satisfying. But open modeling practices are

becoming institutionalized as the open science movement continues to thrive. With this, you

should feel encouraged to publicize your approach to modeling. Only by sharing may you

receive community feedback, allow your models to be adopted and adapted by others, and pro-

mote good model-sharing practices.
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